ТЕЛЕСИЯТелескоп Хаббл

ТЕЛЕСКОП

Найдено 4 определения термина ТЕЛЕСКОП

Показать: [все] [краткое] [полное] [предметную область]

Автор: [отечественный] Время: [советское] [постсоветское] [современное]

ТЕЛЕСКОП

астрономический инструмент для изучения небесных светил по их электромагнитному излучению.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Словарь исторических терминов

ТЕЛЕСКОП

литературно-общественный журнал, выходил в 1831-36 в Москве. Издатель Н. И. Надеждин. Закрыт за публикацию первого из "Философических писем" П.Я. Чаадаева (Надеждин сослан в Усть-Сысольск).

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Энциклопедия История отечества, Большая Российская энциклопедия

"ТЕЛЕСКОП"

научно-лит. журнал, издававшийся в 1831-36 в Москве 2 раза в месяц, в 1834 еженедельно, с приложением газ. "Молва". Издатель - Н. И. Надеждин. Наиболее деятельные сотрудники "Т." - B. П. Андросов, В. Г. Белинский, М. П. Погодин, C. П. Шевырев. В разделах "Наука и искусство" и "Критика" много статей по истории и этнографии Ю. И. Венелина, Ф. Л. Морошкина, Надеждина, Погодина, П. Шафарика. Особое внимание общественности привлекли в "Т." многочисл. статьи Белинского, статья Надеждина "Европеизм и народность в отношении к рус. словесности", статьи по философии рус. натурфилософов Д. М. Велланского, М. Г. Павлова, М. А. Максимовича. В 1836 "Т." был закрыт за опубликование "Философического письма" П. Я. Чаадаева. В идейной направленности "Т." существовали противоречивые элементы будущих течений славянофилов и западников.

Лит.: Очерки по истории рус. журналистики и критики, т. 1, Л., 1950; Козмин Н. К., Н. И. Надеждин,П., 1912.

С. С. Дмитриев. Москва.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Советская историческая энциклопедия: В 16 т. - М.: Государственное научное издательство «Советская энциклопедия», 1961-1976 г.

Телескоп

Телескоп – устройство, предназначенное для наблюдения за небесными объектами – планетами, звездами, туманностями и галактиками. Слово «телескоп» образовано от двух греческих слов, обозначающих «вдаль» и «смотрю».

Первое устройство для наблюдения за отдаленными объектами – зрительную трубу – изобрел в начале XVII в. датский оптик И. Липперсгей. Ее схема была следующей: на переднем конце трубы была укреплена двояковыпуклая линза – объектив. Проходя через объектив, свет собирается в фокусе, где получается изображение небесного тела. На другом конце трубы находится окуляр, позволяющий рассматривать изображение в увеличенном виде. Сила увеличения этого оптического прибора зависит от размеров и выпуклости объектива и окуляра.

Вскоре после изобретения трубы о ней узнал итальянский ученый Галилео Галилей. Он увлекся задачей конструирования «перспективы», как тогда называли телескоп. Сначала он соорудил трубу с трехкратным увеличением, а позже довел этот показатель до тридцатикратного.

Галилей первым использовал подзорную трубу для астрономических наблюдений. Впервые он сделал это 7 января 1610 г. Даже скромных возможностей трубы Галилея хватило для нескольких открытий.

Галилей обнаружил, что поверхность Луны неровная и там, как и на Земле, есть горы и долины. Была раскрыта тайна Млечного Пути. Итальянец обнаружил, что Галактика является не чем иным, как собранием громадного множества звезд.

Помимо этого, Галилей открыл сразу четыре спутника Юпитера, которые назвал в честь Великого герцога Тосканского Козимо II Медичи «Медичейскими звездами».

В книге «Звездный вестник» ученый рассказал о своих наблюдениях. Его открытия вызвали ожесточенную полемику. Многие считали открытия Галилея иллюзией, порожденной зрительной трубой.

Галилей продолжил свои наблюдения. Рассматривая в телескоп Сатурн, он обнаружил по обе стороны планеты пятна. Он решил, что это такие же спутники, как у Юпитера. Два года спустя, к своему недоумению, исследователь увидел эту же планету в «полном одиночестве». Он так и не смог найти объяснения загадки. Лишь полвека спустя голландец X. Гюйгенс открыл, что на самом деле это было кольцо, окружающее Сатурн.

Дальнейшие исследования звездного неба позволили Галилею совершить еще несколько открытий. Он заметил, что Венера, «подражая» Луне, меняет свой облик. Это послужило решающим доказательством того, что Венера, в соответствии с теорией Коперника, вращается вокруг Солнца.

Галилей открыл пятна на Солнце и убедился, что Солнце вращается вокруг своей оси.

Независимо от Галилея, и даже раньше него, в 1609 г. внешний лик Луны с помощью телескопа зарисовал английский математик Т. Харриот. А приоритет открытия спутников Юпитера оспаривал у итальянца немец С. Мариус.

Галилей за пропаганду идей Коперника был подвергнут суду инквизиции и публично отрекся от своих взглядов. Церковь реабилитировала его лишь в 1980 г. В том же году журналы его наблюдений заново просмотрели историки астрономии. Они установили, что зимой 1612–1613 гг. ученый наблюдал планету Нептун, правда, приняв ее за звезду.

Эстафету создания телескопов подхватил у Галилея польский астроном?наблюдатель Ян Гевелий. В 1641 г. в Гданьске на крышах трех своих домов он оборудовал обсерваторию. Создание собственных телескопов Гевелий начинал со сравнительно небольших труб длиной 2–4 м. Совершенствуя технику изготовления, он сумел довести размеры телескопов до 10–20 м. Крупнейший из телескопов Гевелия не поместился в его обсерватории, и этот инструмент пришлось установить за городом, укрепив на специальной мачте высотой в 30 м. Длина трубы этого телескопа достигала 45 м.

Гевелий, как и Галилей, использовал в качестве объектива для своих труб двояковыпуклую линзу. Такие линзовые телескопы называют телескопами?рефракторами. Доведя свои телескопы до очень больших размеров, Гевелий смог добиться довольно значительных увеличений при удовлетворительном качестве изображения. Но он не смог расширить возможности своих телескопов для наблюдений слабых объектов. Это связано с тем, что обнаружение слабых объектов требует увеличения поверхности объектива. Но создание больших линзовых телескопов было сопряжено с непреодолимыми техническими трудностями.

Астрономы смогли решить эту проблему, используя в качестве объектива вогнутые зеркала. Изготовление больших вогнутых зеркал намного проще, чем изготовление линз тех же размеров. Телескопы с зеркальными объективами получили название отражательных телескопов, или телескопов?рефлекторов.

В рефлекторе вогнутое зеркало помещается в нижнем конце трубы. Отражаясь от него, свет собирается у верхнего конца трубы, где при помощи небольшого зеркала отводится наблюдателю.

Небольшие телескопы?рефлекторы мастерил в своей домашней лаборатории еще И. Ньютон в 60–70?е годы XVII в. Первые крупные телескопы такого типа изготовил в конце XVIII в. англичанин В. Гершель. У них были огромные объективы, позволявшие наблюдать очень слабые объекты. Самый крупный из зеркальных телескопов Гершеля имел зеркало поперечником 120 см при длине трубы 12 м. Вверх?вниз он двигался при помощи блоков, а вращался вокруг своей оси на специальной платформе. В 1789 г. при помощи своего телескопа Гершель открыл первую планету Солнечной системы, названную Ураном.

У телескопов?рефлекторов тоже есть серьезные недостатки. Поле обозрения таких телескопов, как правило, мало: в него не помещается даже диск Луны. Это вызывает серьезные неудобства, особенно при фотографировании объектов большой площади, поскольку обзор требует смещения всего инструмента. Кроме того, телескопы?рефлекторы в большинстве случаев не пригодны для точных позиционных измерений.

В связи с этим, в начале XIX в. конструкторская мысль вновь обратилась к линзовым телескопам?рефракторам. Их быстрое усовершенствование произошло благодаря мастерству Й. Фраунгофера. Он соединил в объективе линзы из двух различных сортов стекла – кронгласа и флинтгласа. Оба изготавливаются из кварцевого стекла, различаясь лишь применяемыми добавками. Различные коэффициенты преломления света в этих стеклах позволяют резко ослабить окрашивание изображений – основной недостаток линзовых систем, с которым безуспешно боролся Ян Гевелий.

Фраунгофер первым научился изготавливать крупные линзовые объективы, у которых поперечники были в несколько десятков сантиметров. Ему удалось преодолеть трудности, связанные с тонкостями технологии варки стекла и охлаждения готового стеклянного диска. Диск, из которого предстоит отшлифовать объектив, должен быть сварен без пузырей и охлажден таким образом, чтобы в нем не возникло никаких напряжений. Напряжения могут привести к неравномерным изменениям формы объектива, шлифующегося с точностью до десятитысячных долей миллиметра.

Фраунгофер не только усовершенствовал оптику телескопа?рефрактора, но и превратил его в высокоточный измерительный инструмент. Его предшественникам не удалось найти удачного решения, того, как вести телескоп за звездой. Из?за суточного движения небесной сферы звезда постоянно перемещается и, двигаясь по кривой, быстро выходит из поля зрения неподвижного телескопа.

Фраунгофер наклонил ось вращения телескопа, направив ее в полюс мира. Для слежения за звездой достаточно было вращать его вокруг одной только полярной оси. Фраунгофер автоматизировал этот процесс, добавив к телескопу часовой механизм.

Фраунгофер уравновесил все подвижные части телескопа. Несмотря на большой вес, они повинуются легкому нажиму.

В 1824 г. Фраунгофер изготовил первоклассный телескоп для обсерватории в Дерпте.

Во второй половине XIX в. лучшие телескопы изготавливал американский оптикА. Кларк. В 1885 г. он изготовил для пулковского телескопа?рефрактора крупнейший в то время объектив диаметром 76 см. В 1888 г. на горе Гамильтон близ Сан?Франциско был сооружен телескоп с диаметром объектива 92 см работы Кларка. Вскоре на крыше обсерватории Чикагского университета установили телескоп с объективом в 102 см, который также сделал Кларк.

По конструкции все вышеперечисленные телескопы были повторением телескопов Фраунгофера. Они легко управлялись, но из?за поглощения света в стеклах объектива и прогибания труб размеры этих телескопов оказались предельными для конструкций такого рода.

Внимание астрономов?конструкторов вновь обратилось к телескопам?рефлекторам.

В 1919 г. в Калифорнии в Маунт?Вилсоне вступил в строй телескоп?рефлектор с поперечником зеркала 2,5 м. Опыт его изготовления был учтен в проекте 5?метрового телескопа, на сооружение которого ушло четверть века. Он вступил в строй в 1949 г. в обсерватории Маунт?Паломар.

После Великой Отечественной войны в Крымской астрофизической обсерватории Академии наук СССР был введен в строй самый крупный в Европе телескоп?рефлектор с поперечником зеркала 2,6 м. Накопленный опыт позволил советским оптикам построить крупнейший в мире телескоп?рефлектор с поперечником зеркала 6 м. Его 24?метровая труба весит 300 т, а зеркало – 42 т. Зеркало телескопа в любом положении должно находиться в состоянии невесомости. Оно лежит на 60 подпорных точках. Три из них несущие, остальные – опорные.

Ведение инструмента за звездами осуществляет ЭВМ. Она рассчитывает смещение звезд, внося поправки на влияние рефракции и изгиб трубы, и поворачивает телескоп с необходимой скоростью. Масса подвижной части телескопа составляет 650 т.

В отличие от парагалактической монтировки, применявшейся Фраунгофером, в этом телескопе применена азимутальная монтировка. Сам телескоп называется БТА – большой телескоп азимутальный.

После долгих поисков места телескоп БТА был установлен в предгорьях Северного Кавказа близ станицы Зеленчукская на высоте 2070 м и вступил в строй в 1975 году.

В 1931 г. американец К. Янский при помощи антенны, предназначенной для исследования грозовых радиопомех, зарегистрировал радиоизлучение космического происхождения (от Млечного Пути). Длина его волны составляла 14,6 м.

В 1937 г. в США Г. Ребер построил первый радиотелескоп для исследования космического радиоизлучения – рефлектор диаметром 9,5 м.

Важнейшей характеристикой оптических приборов является разрешающая способность. Она равна наименьшему углу, под которым два объекта различаются данным прибором как самостоятельные. Для человеческого глаза в обычных условиях разрешающая способность составляет около Г. Разрешающая способность телескопа увеличивается с увеличением диаметра телескопа и уменьшением длины волны принимаемого излучения. Для оптических телескопов этот показатель ограничен атмосферой и не превышает 0,3 м.

В радиоастрономии этот показатель долгие годы был гораздо ниже, поскольку длина радиоволн в десятки тысяч раз больше, чем длина волн видимого света. В связи с этим возникла необходимость в постройке радиотелескопов с огромными объективами – параболоидами. Но разрешение радиотелескопов долгое время оставалось недостаточным. Оно составляло минуты и десятки минут. Это не давало возможности изучать тонкую структуру наблюдаемых на небе объектов и даже определять их протяженность.

Эта трудность была преодолена сооружением радиоинтерферометров. Они представляют собой два радиотелескопа, отнесенных друг от друга на сотни и тысячи километров. Сравнение одновременных наблюдений на обоих телескопах дает возможность добиться разрешающей способности до 0,00Г. Первый радиоинтерферометр был построен в Австралии в 1948 г. В 1967 г. были проведены первые наблюдения на интерферометрах с независимой записью сигналов и сверхбольшими базами.

В 1953 г. был сооружен первый крестообразный радиотелескоп. Полноповоротный радиотелескоп с диаметром параболоида 76 м был сооружен в английской обсерватории Джодрелл Бэнк. Позже в Эффельсберге (ФРГ), в радиотехническом институте им. М. Планка был построен телескоп с диаметром зеркала 100 м.

Крупнейший неподвижный радиотелескоп с неподвижной сферической чашей диаметром 300 м был построен в специально подготовленном кратере вулкана Аресибо (Пуэрто?Рико).

В 1976 г. вступил в строй радиотелескоп Академии наук СССР с поперечником 600 м – РАТАН?600. Элементы его зеркала – вертикально установленные на круговом фундаменте плоские отражающие панели размером 7,4 на 2,1 метра. Каждая панель смонтирована на отдельной ферме, которая может перемещаться в небольших пределах взад?вперед и поворачиваться в пределах 70°. Число панелей – около тысячи.

Наблюдения выполняются в отдельных секторах РАТАНа. По команде оператора в соответствии с программой ЭВМ панели разворачиваются в строго рассчитанные положения.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: 100 знаменитых изобретений

Найдено схем по теме ТЕЛЕСКОП — 0

Найдено научныех статей по теме ТЕЛЕСКОП — 0

Найдено книг по теме ТЕЛЕСКОП — 0

Найдено презентаций по теме ТЕЛЕСКОП — 0

Найдено рефератов по теме ТЕЛЕСКОП — 0