Интегральная микросхема

Найдено 2 определения
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [советское] [современное]

Интегральная микросхема
микроминиатюрное электронное устройство, элементы которого (транзисторы, диоды, резисторы и др.) нераздельно объединены (интегрированы) конструктивно, технологически и электрически. Широко используются в радиоэлектронной аппаратуре ракет, систем управления боевыми средствами и войсками.

Источник: Словарь военных терминов

Интегральная микросхема

Около полувека в радиотехнике царили электронные лампы. Они были хрупкими, большими, ненадежными, потребляли много энергии и выделяли массу тепла. Появившиеся в 1948 г. транзисторы были надежнее, долговечнее, потребляли меньше энергии, выделяли меньше тепла. Они дали возможность разрабатывать и создавать сложные электронные схемы из тысяч составляющих: транзисторов, диодов, конденсаторов, резисторов. Но это усложнение породило проблему, заключавшуюся в дороговизне ручной пайки многочисленных соединений. Это занимало много времени и снижало общую надежность устройств. Требовался более надежный и рентабельный способ соединения электронных компонентов схем.
Кроме того, работу большинства полупроводниковых приборов обеспечивает тонкий поверхностный слой толщиной в несколько микрометров. Остальная часть кристалла играет роль основания (подложки), необходимого для прочности транзистора или диода.
При изготовлении транзисторов в них размещали три тонких слоя с р– и n?проводимостью, создав в нужных местах пленочные металлизированные контакты для соединения с внешними элементами схемы и диэлектрические пленки, изолирующие каждый контакт. Технология нанесения полупроводниковых металлизированных и диэлектрических пленок послужила основой создания пленочных интегральных микросхем.
Одним из решений проблемы уменьшения количества соединений в электронных схемах стало создание микромодульной технологии. Она поддерживалась Министерством обороны США. Идея состояла в том, что все компоненты должны иметь одинаковые размеры и форму и содержать выводные контакты для межэлементных соединений. При создании схем модули объединялись в сложные объемные структуры с меньшим количеством проводных соединений.
Среди компаний, занимавшихся созданием микромодульных схем, была «Texas Instruments». Один из ее сотрудников, Дж. Килби, считал, что микромодуль не сможет решить проблему уменьшения числа соединений в сложных схемах. Он начал искать другое решение и пришел к выводу, что основу схемы должен составлять полупроводниковый материал. Пассивные элементы схемы (резисторы и конденсаторы) могли быть сделаны из того же материала, что и активные (транзисторы). Если все компоненты сделаны из одного материала, их можно соединить между собой, формируя законченную схему.
В июле 1958 г. Килби начал работать над созданием микросхемы, а 12 сентября того же года он продемонстрировал руководству компании рабочую интегральную схему, сформированную в кусочке германия, наклеенного на стеклянную пластинку.
Промышленники скептически восприняли появление микросхемы. Только военное ведомство США, и в частности воздушные силы, проявили определенный интерес к новому изобретению.
В феврале 1960 г. фирма «Fairchild» выпустила семейство монолитных транзисторных логических элементов с несколькими биполярными транзисторами на одном кристалле кремния. Оно получило название «микрологика». Фундамент развития интегральных микросхем был заложен планарной технологией Хорни и монолитной технологией Нойса в 1960 году. Сначала микросхемы основывались на биполярных транзисторах, а затем на полевых транзисторах и комбинациях обоих видов.
Интегральная схема сначала отвоевала место на рынке военных изделий, благодаря программе создания первого компьютера на полупроводниковых кристаллах для Министерства Воздушных сил в 1961 году и производству ракет «Минитмен» в 1962?м.
Интегральные схемы, содержавшие до 100 элементов, называются микросхемами с малой степенью интеграции, до 1000 – микросхемами со средней степенью интеграции, до 10 000 – большими интегральными схемами.
В 1967 г. был выпущен первый электронный карманный калькулятор. Его размеры были следующими: 108?156?27 мм. Он был создан на основе большой интегральной микросхемы БИС, выполнявшей основные математические действия (сложение, вычитание, умножение и деление). Ее создателями были Дж. Килби, Дж. Мерриман и Джеймс Ван Тассел.
Рассмотрим процесс изготовления интегральной микросхемы, основой которой служит пластина чистого кремния, обладающая р?проводимостью. Ее тщательно обрабатывают: шлифуют, полируют. После этого проводится окисление пластины в атмосфере сухого кислорода. В результате на ее поверхности возникает слой двуокиси кремния SiO2. Он обладает большой прочностью и высокой химической стойкостью.
Затем проводится фотолитография: на пластину наносится светочувствительный слой (фоторезист). На следующем этапе на фоторезист накладывается фотошаблон. На нем фотографическим способом изготовлен рисунок всех элементов, которые необходимо закрепить на подложке. Фоторезист облучается ультрафиолетовым светом, проявляется, полимеризуется и сохраняется в тех местах, где фотошаблон имеет прозрачные окна. Там, где ультрафиолетовый свет не проник через шаблон, фоторезист удаляется химической обработкой. Оставшийся фоторезист служит контактной маской, защищающей те области пленки металла, которые должны быть сохранены от химического воздействия.
Поверхность схемы подвергается химическому травлению, удаляющему пленку металла с поверхности, кроме мест, защищенных фоторезистом.
Применяемый в описанной схеме фоторезист называется негативным. Применяется также позитивный фоторезист, который не закрепляется, а разрушается ультрафиолетовым светом. При его использовании окна на фотошаблоне соответствуют пустым промежуткам на будущей микросхеме.
На участки поверхности подложки, свободные от фоторезиста, вносятся примеси путем легирования – диффузии необходимых примесей внутрь подложки. Такими примесями могут быть сурьма или мышьяк, которые обладают n?проводимостью. Другим способом получения участков с n?проводимостью является планарная технология. Она заключается в том, что перед легированием проводится эпитаксия – постепенное наращивание слоя, по структуре повторяющего кристаллическую структуру подложки, но имеющего отличные от нее физические свойства. Так, методом эпитаксии на подложку с p?проводимостью наносится слой с n?проводимостью. Используя соответствующие маски, в нужные области эпитаксиального слоя вводятся примеси, обеспечивающие p?проводимость.
Все зоны и их контакты создаются в одной плоскости, отсюда и термин «планарная технология».
Для нанесения пленок, легирования подложек применяются вакуумные камеры, в которых могут располагаться электронные пушки, магнетроны, источники рентгеновских или ионных лучей.
После эпитаксии или легирования поверхность вновь покрывают слоем оксида, проводят фотолитографию, травление, открытие новых «окон» кремния, после чего проходит легирование бором, обладающим p?проводимостью. Так создаются базовые области транзисторов, p?n переходы и области резисторов.
При следующей диффузии – диффузии фосфора – формируются эмиттерные области транзисторов. Затем вскрываются «окна» под контакты с областями коллектора, эмиттера и базы транзисторов, p– и n?областями диодов и с резисторами.
Затем создаются внутрисхемные соединения путем напыления пленки алюминия, которая после этого селективно травится путем фотолитографии. Сохраненные участки алюминия образуют электроды элементов, соединительные дорожки и контактные площадки для подсоединения структуры интегральной схемы к выводам корпуса.
Всю поверхность полупроводникового кристалла покрывают защитным слоем, который после этого удаляют с контактных площадок.
Готовые микросхемы подвергают тщательному контролю для выявления дефектных изделий.
Применение микросхем позволило значительно уменьшить размеры радиотехнических приборов, электронно?вычислительных машин, увеличить их быстродействие.

Источник: 100 знаменитых изобретений. 2009