Микроскоп

Найдено 1 определение
Микроскоп

Глаз человека устроен так, что не может разглядеть предмет, размеры которого не превышают 0,1 мм. В природе же существуют объекты, чьи размеры намного меньше. Это микроорганизмы, клетки живых тканей, элементы структуры веществ и многое другое.
Еще в античные времена для улучшения зрения применялись шлифованные природные кристаллы. С развитием стеклоделия стали изготовлять стеклянные чечевицы – линзы. Р. Бекон в XIII в. советовал людям со слабым зрением класть на предметы выпуклые стекла для того, чтобы их лучше рассмотреть. В это же время в Италии появились очки, состоявшие из двух соединенных линз.
В XVI в. мастера в Италии и Нидерландах, изготовлявшие очковые стекла, знали о свойстве системы из двух линз давать увеличенное изображение. Одно из первых таких устройств изготовил в 1590 г. голландец 3. Янсен.
Несмотря на то что увеличительная способность сферических поверхностей и линз была известна еще в XIII в., до начала XVII в. никто из естествоиспытателей даже не пытался применить их для наблюдения мельчайших предметов, недоступных невооруженному человеческому глазу.
Слово «микроскоп», произошедшее от двух греческих слов – «маленький» и «смотрю», ввел в научный обиход член академии «Dei Lyncei» (рысеглазых) Десмикиан в начале XVII века.
В 1609 г. Галилео Галилей, изучая сконструированную им зрительную трубу, использовал ее и в качестве микроскопа. Для этого он изменял расстояние между объективом и окуляром. Галилей первым пришел к выводу, что качество изготовления линз для очков и для зрительных труб должно быть различным. Он создал микроскоп, подбирая такое расстояние между линзами, при котором увеличивались не удаленные, а близко расположенные предметы. В 1614 г. Галилей рассматривал при помощи микроскопа насекомых.
Ученик Галилея Э. Торричелли перенял у своего учителя искусство шлифовки линз. Кроме изготовления зрительных труб Торричелли конструировал простые микроскопы, состоявшие из одной крошечной линзы, которую он получал из одной капли стекла, расплавляя над огнем стеклянную палочку.
В XVII в. были популярны простейшие микроскопы, состоявшие из лупы – двояковыпуклой линзы, закрепленной на подставке. На подставке укреплялся и предметный столик, на котором размещался рассматриваемый объект. Внизу под столиком находилось зеркало плоской или выпуклой формы, которое отражало солнечные лучи на предмет и подсвечивало его снизу. Для улучшения изображения лупа перемещалась относительно предметного столика при помощи винта.
В 1665 г. англичанин Р. Гук при помощи микроскопа, в котором использовались маленькие стеклянные шарики, открыл клеточное строение животных и растительных тканей.
Современник Гука голландец А. ван Левенгук изготовлял микроскопы, состоявшие из небольших двояковыпуклых линз. Они давали 150–300?кратное увеличение. При помощи своих микроскопов Левенгук исследовал строение живых организмов. В частности, он открыл движение крови в кровеносных сосудах и красные кровяные тельца, сперматозоиды, описал строение мышц, чешуйки кожи и многое другое.
Левенгук открыл новый мир – мир микроорганизмов. Он описал множество видов инфузорий и бактерий.
Много открытий в области микроскопической анатомии сделал голландский биолог Я. Сваммердам. Наиболее подробно он исследовал анатомию насекомых. В 30?е гг. XVIII в. он выпустил богато иллюстрированный труд под названием «Библия природы».
Методы расчета оптических узлов микроскопа разработал швейцарец Л. Эйлер, работавший в России.
Наиболее распространенная схема микроскопа следующая: исследуемый предмет помещается на предметном столике. Над ним располагается устройство, в котором смонтированы линзы объектива и тубус – трубка с окуляром. Наблюдаемый предмет освещается с помощью лампы или солнечного света, наклонного зеркала и линзы. Диафрагмы, установленные между источником света и предметом, ограничивают световой поток и уменьшают в нем долю рассеянного света. Между диафрагмами установлено зеркало, изменяющее направление светового потока на 90°. Конденсор концентрирует на предмете пучок света. Объектив собирает лучи, рассеянные предметом и образует увеличенное изображение предмета, рассматриваемое при помощи окуляра. Окуляр работает как лупа, давая дополнительное увеличение. Пределы увеличения микроскопа от 44 до 1500 раз.
В 1827 г. Дж. Амичи применил в микроскопе иммерсионный объектив. В нем пространство между предметом и объективом заполнено иммерсионной жидкостью. В качестве такой жидкости применяются различные масла (кедровое или минеральное), вода или водный раствор глицерина и др. Такие объективы позволяют увеличить разрешающую способность микроскопа, улучшить контрастность изображения.
В 1850 г. английский оптик Г. Сорби создал первый микроскоп для наблюдения объектов в поляризованном свете. Такие аппараты применяются для изучения кристаллов, образцов металлов, животных и растительных тканей.
Начало интерференционной микроскопии было положено в 1893 г. англичанином Дж. Сирксом. Ее суть в том, что каждый луч, входя в микроскоп, раздваивается. Один из полученных лучей направляется на наблюдаемую частицу, второй – мимо нее. В окулярной части оба луча вновь соединяются, и между ними возникает интерференция. Интерференционная микроскопия позволяет изучать живые ткани и клетки.
В XX в. появились различные виды микроскопов, имеющие разное назначение, конструкцию, позволяющие изучать объекты в широких диапазонах спектра.
Так, в инвертированных микроскопах объектив располагается под наблюдаемым объектом, а конденсор – сверху. Направление хода лучей изменяется при помощи системы зеркал, и в глаз наблюдателя они попадают, как обычно – снизу вверх. Эти микроскопы предназначены для изучения громоздких предметов, которые трудно расположить на предметных столиках обычных микроскопов. С их помощью исследуют культуры тканей, химические реакции, определяют точки плавления материалов. Наиболее широко такие микроскопы применяются в металлографии для наблюдения за поверхностями металлов, сплавов и минералов. Инвертированные микроскопы могут оснащаться специальными устройствами для микрофотографирования и микрокиносъемки.
На люминесцентных микроскопах устанавливаются сменные светофильтры, позволяющие выделить в излучении осветителя ту часть спектра, которая вызывает люминесценцию исследуемого объекта. Специальные фильтры пропускают от объекта только свет люминесценции. Источниками света в таких микроскопах служат ртутные лампы сверхвысокого давления, излучающие ультрафиолетовые лучи и лучи коротковолнового диапазона видимого спектра.
Ультрафиолетовые и инфракрасные микроскопы служат для исследования областей спектра, недоступного человеческому глазу. Оптические схемы аналогичны схемам обычных микроскопов. Линзы этих микроскопов изготовлены из материалов, прозрачных для ультрафиолетовых (кварц, флюорит) и инфракрасных (кремний, германий) лучей. Они снабжены фотокамерами, фиксирующими невидимое изображение и электронно?оптическими преобразователями, превращающими невидимое изображение в видимое.
Стереомикроскоп обеспечивает объемное изображение объекта. Это собственно два микроскопа, выполненные в единой конструкции таким образом, что правый и левый глаза наблюдают объект под разными углами. Они нашли применение в микрохирургии и сборке миниатюрных устройств.
Микроскопы сравнения представляют собой два обычных объединенных микроскопа с единой окулярной системой. В такие микроскопы можно наблюдать сразу два объекта, сравнивая их визуальные характеристики.
В телевизионных микроскопах изображение препарата преобразуется в электрические сигналы, воспроизводящие это изображение на экране электронно?лучевой трубки. В этих микроскопах можно изменять яркость и контраст изображения. С их помощью можно изучать на безопасном расстоянии объекты, опасные для рассмотрения с близкого расстояния, например радиоактивные вещества.
Лучшие оптические микроскопы позволяют увеличить наблюдаемые объекты примерно в 2000 раз. Дальнейшее увеличение невозможно, поскольку свет огибает освещаемый объект, и если его размеры меньше, чем длина волны, такой объект становится невидимым. Минимальный размер предмета, который можно разглядеть в оптический микроскоп – 0,2–0,3 микрометра.
В 1834 г. У. Гамильтон установил, что существует аналогия между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Возможность создания электронного микроскопа появилась в 1924 г. после того, как Л. Де Бройль выдвинул гипотезу, что всем без исключения видам материи – электронам, протонам, атомам и др. присущ корпускулярно?волновой дуализм, то есть они обладают свойствами как частицы, так и волны. Технические предпосылки для создания такого микроскопа появились благодаря исследованиям немецкого физика X. Буша. Он исследовал фокусирующие свойства осесимметричных полей и в 1928 г. разработал магнитную электронную линзу.
В 1928 г. М. Кнолль и М. Руска приступили к созданию первого магнитного просвечивающего микроскопа. Три года спустя они получили изображение объекта, сформированного при помощи пучков электронов. В 1938 г. М. фон Арденне в Германии и в 1942 г. В. К. Зворыкин в США построили первые растровые электронные микроскопы, работающие по принципу сканирования. В них тонкий электронный пучок (зонд) последовательно перемещался по объекту от точки к точке.
В электронном микроскопе, в отличие от оптического, вместо световых лучей используются электроны, а вместо стеклянных линз – электромагнитные катушки или электронные линзы. Источником электронов для освещения объекта является электронная «пушка». В ней источником электронов является металлический катод. Затем электроны собираются в пучок с помощью фокусирующего электрода и под действием сильного электрического поля, действующего между катодом и анодом, набирают энергию. Для создания поля к электродам прикладывается напряжение до 100 киловольт и более. Напряжение регулируется ступенеобразно и отличается большой стабильностью – за 1–3 минуты оно изменяется не более чем на 1–2 миллионные доли от исходного значения.
Выходя из электронной «пушки», пучок электронов с помощью конденсорной линзы направляется на объект, рассеивается на нем и фокусируется объектной линзой, которая создает промежуточное изображение объекта. Проекционная линза вновь собирает электроны и создает второе, еще более увеличенное изображение на люминесцентном экране. На нем под действием ударяющихся в него электронов возникает светящаяся картина объекта. Если поместить под экраном фотопластинку, то можно сфотографировать это изображение.
Все вышеперечисленные узлы электронного микроскопа объединяются в общую конструкцию – колонну. Внутри колонны на всем пути электронов поддерживается вакуум с давлением до 10?7 Па. Это необходимо для того, чтобы электроны не рассеивались на постороннем веществе – атомах и молекулах газа – во избежание искажения изображения. В основании микроскопа размещаются стабильные источники электрического тока. Здесь же размещается пульт управления микроскопом.
Полное увеличение электронного микроскопа равняется произведению увеличений объективной и проекционной линз. Наблюдаемый объект увеличивается в 20 000–40 000 раз. Электронные микроскопы позволяют получать изображение объектов размером до 2–3·10?8 м.

Источник: 100 знаменитых изобретений. 2009

Найдено научных статей по теме — 7

Читать PDF

Изучение древней керамики методом сканирующей электронной микроскопии с микрозондовым анализом

Тетерина Т. И.
Рассматриваются результаты исследований древней керамики методом сканирующей электронной микроскопии с микрозондовым анализом.
Читать PDF

Использование микроскопирования для оценки экологически значимых характеристик различных микробиоцен

Юрченко Валентина Александровна, Дяговец Я. С., Хроменкова Е. С., Остапова А. С.
Читать PDF

Зондово-микроскопические исследования реанимирующих дислокаций на русле залеченной трещины в кристал

Плужникова Татьяна Николаевна, Федоров Виктор Александрович, Плужников Сергей Николаевич
Проведены зондово-микроскопические исследования русла залеченной трещины. Показано, что упругая энергия связи реанимирующих дислокаций в кристаллах LiF в 4 раза меньше, чем у обычных.
Читать PDF

УСТЬ-КОВИНСКИЙ МАМОНТ: РЕЗУЛЬТАТЫ МИКРОСКОПИЧЕСКОГО ИССЛЕДОВАНИЯ

Волков Павел Владимирович, Лбова Людмила Валентиновна, Губар Юлия Сергеевна, Швец Ольга Львовна
Многослойная стоянка Усть-Кова является одним из известных позднепалеолитических памятников Северного Приангарья, где были обнаружены изделия из бивня.
Читать PDF

Методы микроскопического исследования папиллярных узоров

Виктор Васильевич Пономарев, Татьяна Анатольевна Солодова
Проанализированы эмпирические методы, применяемые при микроскопических исследованиях папиллярных узоров, а также морфологический анализ микропризнаков, используемый для идентификационного исследования следов папиллярных узоров огр
Читать PDF

"Жемчужина у моря" под микроскопом этнологов и историков: этнология Одессы в исторической и современ

Шевченко Кирилл Владимирович
В коллективной монографии «Этнология Одессы в исторической и современной перспективах», изданной в 2017 году, представлен всесторонний анализ социокультурного феномена Одессы.
Читать PDF

ИГИЛ под микроскопом экспертов

Мельков Сергей Анатольевич, Ряжапов Нил Халиуллович
В статье анализируются некоторые впечатления, полученные авторами на семинаре в Московском центре Карнеги, проведенном в сентябре 2015 г.

Найдено книг по теме — 13

Похожие термины: