Сонин Николай Яковлевич

Найдено 2 определения
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [современное]

Сонин Николай Яковлевич

Сонин (Николай Яковлевич) - родился в 1849 г. Образование получил в Москве, в 4-й гимназии и в университете по физико-математическому факультету (1869). Был оставлен при университете и в 1871 г. защитил диссертацию на степень магистра чистой математики под названием "О разложении функций в бесконечные ряды" (V т. "Математического Сборника"). Диссертация эта посвящена объединению и обобщению результатов, полученных Гейне и К. Нейманом относительно разложения дроби 1/(a-z) по сферическим и цилиндрическим функциям. В 1874 г. удостоен степени доктора математики за диссертацию "Об интегрировании уравнений с частными производными второго порядка" (VII т. "Математического Сборника"), переведенную на немецкий язык профессором Энгелем в "Mathem. Ann." 1897 г. В этой диссертации впервые решен вопрос о существовании общего интеграла первого порядка и приведен в окончательную форму способ интеграции, предложенный Дарбу. С 1872 г. состоял на службе в Варшавском университете, сначала в должности доцента, потом (1877) экстраординарного и, наконец, (1879) ординарного профессора. В 1890 г. получил от Академии Наук премию имени В.Я. Буняковского за представленный сборник статей, в 1891 г. избран членом-корреспондентом академии, с 1893 г. избран ординарным академиком на место В.Я. Буняковского. В 1899 г. назначен, сверх академической должности, попечителем санкт-петербургского учебного округа. Первый труд "О дифференцировании с произвольным указателем" был сообщен в 1869 г. на II съезде русских естествоиспытателей и врачей в Москве ("Математический Сборник", т. VI). В статье "Recherches sur les fonctions cylindriques" ("Mathematische Annalen", 1879) выведены замечательные прерывные интегралы с цилиндрическими функциями и выполнено интегрирование гипергеометрического уравнения при помощи цилиндрических функций. В статье "Об одной формуле приведения кратных интегралов" ("Варшавские Университетские Известия", 1889) представлено обобщение известной формулы Каталана и благодаря ее систематическому развитию оказалось возможным привести множество кратных интегралов к простым. В статье "О некоторых неравенствах, относящихся к определенным интегралам" ("Mem. de l´Acad. de St.-Petersb.", 1898), указано происхождение и истинное место в теории определенных интегралов некоторым неравенствам, выведенным П.Л. Чебышевым , которые к тому же значительно обобщены. Другие научные труды С.: в "Математическом Сборнике" - об интегралах полного уравнения (A+Cz)dx+(B+Dz)dy+Edz=0 (т. VI) и о приведении одного кратного интеграла (т. XIV); в "Варшавских Университетских Известиях" - об интегрируемости выражений, содержащих неопределенные функции (1875), обобщение принципа последнего множителя (1875), о распространении тепла в кристаллах (1878), об одном интеграле, содержащем числовую функцию [x] (1885), о числовых тождествах и их приложении к учению о бесконечных рядах (1885), о максимальных и минимальных свойствах плоских кривых (1886), о приближенных вычислениях определенных интегралов и о входящих при этом целых функциях (1887), о Бернуллиевых полиномах и их приложениях (1888), о приведении одного кратного интеграла (1889), о прерывной функции [x] и ее применениях (1889), о представлении логарифма и Эйлерова постоянного определенным интегралом (1889) и об остатке формулы Тэлера (1891); в "Записках Новороссийского Общества Естествоиспытателей" - "Обобщение одной формулы Абеля" (1879 и "Acta Math.", 1884), две статьи "Об одной задаче вариационных исчислений" (1884 и 1885); в "Протоколах Варшавского Общества Естествоиспытателей" за 1889, 1890 и 1891 гг. несколько кратких заметок; в "Известиях Академии Наук" - о производных высших порядков (1894), заметка по поводу письма П.Л. Чебышева к С.В. Ковалевской (1895), две статьи об уравнении dy/dx=1+R(x)/y (1895), ряд Ивана Бернулли (эпизод из истории математики) (1897), об интегралах дифференциалов, содержащих кубичный корень (1900); в "Записках Академии Наук" - о точности определения предельных величин интегралов (1892), Sur l´integrale F(x)/(z-x)dx (1892); в иностранных изданиях - "Sur un theoreme de Gauss" (Bull. de la soc. math. de France, т. VIII), "Sur les termes complementaires de la formule d´Euler et de celle de Stirling" ("Comptes rendus de l´Acad. de Paris", 1889), Extrait d´une lettre a M. Hermite ("Ann. de l´Ec. Normale" 1889), Sur les polynomes de Bernoulli ("Journ. f. Math.", т. 116). В работах о дополнительных членах формул Эйлера и Стирлинга впервые выведены низшие пределы величин этих дополнительных членов в различных формах, одна из которых обязана своим происхождением вызову, сделанному автору по этому предмету знаменитым парижским академиком Эрмитом.

Источник: Биографический словарь. 2008

Сонин, Николай Яковлевич

— род. в 1849 г. Образование получил в Москве, в 4-й гимназии и в университете по физико-математическому факультету (1869). Был оставлен при Университете и в 1871 г. защитил диссертацию на степень магистра чистой математики под названием: "О разложении функций в бесконечные ряды" (V т. "Матем. сборн."). Диссертация эта посвящена объединению и обобщению результатов, полученных Гейне и К. Нейманом относительно разложения дроби 1/(a — z) по сферическим и цилиндрическим функциям. В 1874 г. удостоен степени доктора математики за диссертацию: "Об интегрировании уравнений с частными производными второго порядка" (VII т. "Матем. Сборн."), переведенную на нем. яз. проф. Энгелем в "Mathem. Ann." 1897 г. В этой диссертации впервые решен вопрос о существовании общего интеграла первого порядка и приведен в окончательную форму способ интеграции, предложенный Дарбу. С 1872 г. состоял на службе в Варшавском университете, сначала в должности доцента, потом (1877) экстраорд. и, наконец (1879), орд. профессора. В 1890 г. получил от акад. наук премию имени В. Я. Буняковского за представленный сборник статей, в 1891 г. избран членом-корреспондентом Акад., с 1893 г. избран ординарным академиком на место В. Я. Буняковского. В 1899 г. назначен, сверх академической должности, попечителем с.-петербургского учебного округа. Первый труд: "О дифференцировании с произвольным указателем" был сообщен в 1869 г. на II съезде русских естествоиспытателей и врачей в Москве ("Матем. Сборн.", т. VI). В статье "Rechercbes sur les fonctions cylindriques" ("Mathematische Annalen", 1879) выведены замечательные прерывные интегралы с цилиндрическими функциями и выполнено интегрирование гипергеометрического уравнения при помощи цилиндрических функций. В статье "Об одной формуле приведения кратных интегралов" ("Варш. Ун. Изв.", 1889) представлено обобщение известной формулы Каталана, и благодаря ее систематическому развитию оказалось возможным привести множество кратных интегралов к простым. В статье "О некоторых неравенствах, относящихся к определенным интегралам ("Mém. de l´Acad. de St.-Petersb." 1898), указано происхождение и истинное место в теории определенных интегралов некоторым неравенствам, выведенным П. Л. Чебышевым, которые к тому же значительно обобщены.


Другие научные труды С.: в "Математическом Сборнике" — об интегр. полного ур. (A + Cz)dx + (B + Dz)dy + Edz = 0 (т. VI) и о привед. одного кратн. интеграла (т. XIV); в "Варш. Унив. Изв." — об интегрируемости выражений содержащих неопределенные функции (1875), обобщение принципа последнего множителя (1875), о распространении тепла в кристаллах (1878), об одном инт. содержащем числовую функцию [x] (1885), о числовых тождествах и их приложении к учению о беcк. рядах (1885), о максимальных и минимальных свойствах плоских кривых (1886), о прибл. вычисл. определ. интегралов и о входящих при этом целых функциях (1887), о Бернуллиевых полиномах и их приложениях (1888), о приведении одного кратн. инт. (1889), о прерывной функции [х] и ее применениях (1889), о представлении логарифма и Эйлерова пост. опред. интегралом (1889) и об остатке формулы Тэлера (1891); в "Записках Новороссийск. Общ. Естеств." — "Обобщение одной формулы Абеля" (1879 и "Acta Math.", 1884), две статьи "Об одной задаче вариац. исч." (1884 и 1885); в "Протоколах Варш. Общ. Естеств." за 1889, 1890 и 1891 г. несколько кратких заметок; в "Изв. Акад. Наук" — о производных высших порядков (1894), заметка по поводу письма П. Л. Чебышева к С. В. Ковалевской (1895), две статьи об уравн. dy/dx = 1 + [R(x)/y] (1895), ряд Ивана Бернулли (эпизод из истории матем.) (1897), об интегр. дифференциалов содержащих кубичный корень (1900); в "Записках Академии Наук" — о точности определения предельных величин интегралов (1892), "Sur l´intégrale " (1892); в иностранных изданиях — "Sur un théorème de Gauss" ("Bull. de la soc. math. de France", т. VIII), "Sur les termes complémentaires de la formule d´Euler et de celle de Stirling" ("Comptes rendus de l´Acad. de Paris", 1889), "Extrait d´une lettre à M. Hermite" ("Ann. de l´Ес. Normale" 1889), "Sur les polynomes de Bernoulli" ("Journ. f. Math.", т. 116). В работах о дополнительных членах формул Эйлера и Стирлинга впервые выведены низшие пределы величин этих дополнительных членов в различных формах, одна из которых обязана своим происхождением вызову, сделанному автору по этому предмету знаменитым парижским академиком Эрмитом.


{Брокгауз}





Сонин, Николай Яковлевич


(10 февр. 1849 — 14 февр 1915) — рус. математик, акад. (с 1893, чл.-корр с 1891). В 1869 окончил Моск. ун-т С 1872 — доцент, с 1877 — проф. Варшав. ун-та. Темы многих работ С. являются продолжением исследований П. Л Чебышева. К этим работам относятся труд "О точности определения предельных величин интегралов" (1892) результаты к-рого связаны с доказательством предельной теоремы теории вероятностей, а также "О приближенном вычислении определенных интегралов и входящих при этом вычислении целых функциях" (1887). С. исследовал важный для приложений класс интегральных ур-ний с переменным пределом и ядром, зависящим от разности аргументов (1884) Ему принадлежат работы, посвященные специальным, в особенности цилиндрическим, функциям, а также асимптотич. разложениям функций.


Соч.: Исследования о цилиндрических функциях и специальных полиномах. М., 1954 (имеется список трудов С.).


Лит.: Материалы для биографического словаря действительных членов Академии наук, т. 3. ч. 2, П., 1917 (имеется библиография трудов С.).





Сонин, Николай Яковлевич


(22.2.1849—27.2.1915) — русский математик. Акад. Петерб. АН (1893; чл.-кор. 1891). Род. в Туле. Окончил Моск. ун-т (1869). В 1871 защитил магистерскую диссертацию. В 1873—77 выезжал в командировку за границу, где слушал лекции Ж. Лиувилля, Ш. Эрмита, Ж. Бертрана, Ж. Серре, Ж. Дарбу. С 1877 — проф. Варшавского ун-та. С 1894 жил в Петербурге. Читал лекции по математике на Высших женских курсах и в Петерб. ун-те; с 1899 занимал административные посты. В начале своей науч. деятельности С. опубл. неск. работ по теории рядов, в частности работы "Об остаточном члене формулы Тейлора" и "Ряд Иоганна Бернулли". В д-рской диссертации разрабатывал проблему интегрирования ур-ний с частными производными 2-го порядка, потом опубл. еще неск. работ по теории дифференциальных ур-ний. Однако осн. науч. результаты С. в области математики касаются теории разл. спец. функций: гамма-функций и цилиндрических функций, полиномов Бернулли, ортогональных многочленов и т. д. В мемуаре "О некоторых неравенствах, касающихся определенных интегралов" разработал метод ортогонализации системы функций. Результаты по теории ортогональных многочленов получил большей частью в связи с приближенным вычислением определенных интегралов.

Источник: Большая русская биографическая энциклопедия. 2008